Apache Kafka and Apache Spark - SaaS 

CloudBroker GmbH  
roman.dolhai@scaletools.com
Type: Software as a Service
TRL: 9

Apache Kafka is a distributed event store and stream-processing platform. It is an open-source system developed by the Apache Software Foundation written in Java and Scala. The project aims to provide a unified, high-throughput, low-latency platform for handling real-time data feeds Kafka is a distributed system consisting of servers and clients that communicate via a high-performance TCP network protocol. It can be deployed on bare-metal hardware, virtual machines, and containers in on-premise as well as cloud environments.

Servers: Kafka is run as a cluster of one or more servers that can span multiple datacenters or cloud regions. Some of these servers form the storage layer, called the brokers. Other servers run Kafka Connect to continuously import and export data as event streams to integrate Kafka with your existing systems such as relational databases as well as other Kafka clusters. To let you implement mission-critical use cases, a Kafka cluster is highly scalable and fault-tolerant: if any of its servers fails, the other servers will take over their work to ensure continuous operations without any data loss.

Clients: They allow you to write distributed applications and microservices that read, write, and process streams of events in parallel, at scale, and in a fault-tolerant manner even in the case of network problems or machine failures. Kafka ships with some such clients included, which are augmented by dozens of clients provided by the Kafka community: clients are available for Java and Scala including the higher-level Kafka Streams library, for Go, Python, C/C++, and many other programming languages as well as REST APIs.

Apache Spark is a multi-language engine for executing data engineering, data science, and machine learning on single-node machines or clusters.

Spark was created to address the limitations to MapReduce, by doing processing in-memory, reducing the number of steps in a job, and by reusing data across multiple parallel operations. With Spark, only one-step is needed where data is read into memory, operations performed, and the results written back—resulting in a much faster execution. Spark also reuses data by using an in-memory cache to greatly speed up machine learning algorithms that repeatedly call a function on the same dataset. Data re-use is accomplished through the creation of DataFrames, an abstraction over Resilient Distributed Dataset (RDD), which is a collection of objects that is cached in memory, and reused in multiple Spark operations. This dramatically lowers the latency making Spark multiple times faster than MapReduce, especially when doing machine learning, and interactive analytics.

IPR / Licence

Both software released under Apache 2.0 license.

Contact Person

Roman Dolhai

Information

Kafka version 3.7 and Spark version 3.5 with other are available on demand

Website:

https://spark.apache.org/ https://kafka.apache.org/

Documentation:

https://kafka.apache.org/documentation/ https://spark.apache.org/docs/latest

https://github.com/apache/spark https://github.com/apache/kafka